olaf.commons package

Submodules

olaf.commons.candidate_term_tools module

olaf.commons.candidate_term_tools.build_cts_from_strings(ct_label_strings: Set[str], spacy_model: Language, docs: List[Doc]) Set[CandidateTerm][source]

Create candidate terms from a set of strings label.

Parameters

ct_label_stringsSet[str]

The set of strings to use for candidate terms labels.

spacy_modelspacy.language.Language

The spaCy model to retrieve the corpus occurrences.

docsList[spacy.tokens.Doc]

The corpus in which to find the corpus occurrences.

Returns

Set[CandidateTerm]

The set of created candidate terms.

olaf.commons.candidate_term_tools.check_ct_belongs_to_group(candidate_term: CandidateTerm, ct_labels: Set[str], group_cts: Tuple[CandidateTerm], group_label: Set[str]) bool[source]

Check if a candidate term belongs to a group of candidate terms. Candidate must have common label or synonyms with the group. If the candidate is a candidate relation, it should have the same source and destination concept as well.

Parameters

candidate_term: CandidateTerm

Candidate term to check.

ct_labels: Set[str]

Candidate term label and synonyms.

group_cts: Tuple[CandidateTerm]

Tuple of candidate terms to compare with.

group_label: Set[str]

Group of candidate terms labels and synonyms.

Returns

bool

True if the candidate term belongs to the group, False otherwise.

olaf.commons.candidate_term_tools.cts_have_common_synonyms(c_term_1: CandidateTerm, c_term_2: CandidateTerm) bool[source]

Check if two terms have common synonyms.

Parameters

c_term_1CandidateTerm

First candidate term to compare.

c_term_2CandidateTerm

Second candidate term to compare.

Returns

bool

True if the two candidate terms have common synonyms, False otherwise.

olaf.commons.candidate_term_tools.cts_to_concept(concept_candidates: Set[CandidateTerm]) Concept[source]

Create a concept out of a set of candidate terms.

Parameters

concept_candidatesSet[CandidateTerm]

Set of candidate terms to be merged in a same concept.

Returns

Concept

The created concept.

olaf.commons.candidate_term_tools.filter_cts_on_first_token_in_term(candidate_terms: Set[CandidateTerm], filtering_tokens: Set[str]) Set[CandidateTerm][source]

Filter a set of candidate terms based on their first token.

Note: this function acts only at the candidate term label level.

Parameters

candidate_terms: Set[CandidateTerm]

Set of candidate terms to filter.

filtering_tokens: Set[str]

The set of token strings to use for filtering the candidate terms.

Returns

Set[CandidateTerm]

The set of filtered candidate terms.

olaf.commons.candidate_term_tools.filter_cts_on_last_token_in_term(candidate_terms: Set[CandidateTerm], filtering_tokens: Set[str]) Set[CandidateTerm][source]

Filter a set of candidate terms based on their last token.

Note: this function acts only at the candidate term label level.

Parameters

candidate_terms: Set[CandidateTerm]

Set of candidate terms to filter.

filtering_tokens: Set[str]

The set of token strings to use for filtering the candidate terms.

Returns

Set[CandidateTerm]

The set of filtered candidate terms.

olaf.commons.candidate_term_tools.filter_cts_on_token_in_term(candidate_terms: Set[CandidateTerm], filtering_tokens: Set[str]) Set[CandidateTerm][source]

Filter a set of candidate terms based on tokens appearing in them.

Note: this function acts only at the candidate term label level.

Parameters

candidate_terms: Set[CandidateTerm]

Set of candidate terms to filter.

filtering_tokens: Set[str]

The set of token strings to use for filtering the candidate terms.

Returns

Set[CandidateTerm]

The set of filtered candidate terms.

olaf.commons.candidate_term_tools.group_cts_on_synonyms(candidate_terms: Set[CandidateTerm]) List[Set[CandidateTerm]][source]

Group candidate terms with commons labels or synonyms.

Parameters

candidate_terms: Set[CandidateTerm]

Candidate terms to group by commons labels and synonyms.

Returns

List[Set[CandidateTerm]]

Candidate terms grouped.

olaf.commons.candidate_term_tools.split_cts_on_token(candidate_terms: Set[CandidateTerm], splitting_tokens: Set[str], spacy_model: Language, docs: List[Doc]) Set[CandidateTerm][source]

Split candidate terms based on a set of token strings.

Note: this function acts only at the candidate term label level.

Parameters

candidate_terms: Set[CandidateTerm]

The set of candidate terms to split.

splitting_tokens: Set[str]

The token strings to split candidate terms on.

spacy_modelspacy.language.Language

The spaCy model to retrieve the candidate terms’ corpus occurrences.

docsList[spacy.tokens.Doc]

The corpus in which to find the candidate terms’ corpus occurrences.

Returns

Set[CandidateTerm]

The new set of candidate terms.

olaf.commons.embedding_tools module

olaf.commons.embedding_tools.sbert_embeddings(model_name: str, words: List[str]) Any[source]

olaf.commons.errors module

exception olaf.commons.errors.EmptyCorpusError[source]

Bases: Exception

Exception raised when the text corpus represented as spacy documents is empty.

exception olaf.commons.errors.FileOrDirectoryNotFoundError(path: str)[source]

Bases: Exception

Exception raised when the corpus path is not a directory or a file.

exception olaf.commons.errors.MissingEnvironmentVariable(component_name: str, env_var_name: str)[source]

Bases: Exception

Exception raised when an environment variable is missing.

exception olaf.commons.errors.NotCallableError(function_name: str)[source]

Bases: Exception

Exception raised when the argument passed as a function is not callable.

exception olaf.commons.errors.OptionError(component_name: str, option_name: str, error_type: str)[source]

Bases: Exception

Exception raised when a required option is missing for a pipeline component to function.

exception olaf.commons.errors.ParameterError(component_name: str, param_name: str, error_type: str)[source]

Bases: Exception

Exception raised when a required parameter is missing for a pipeline component to function.

exception olaf.commons.errors.PipelineCorpusInitialisationError[source]

Bases: Exception

Exception raised when a pipeline is initialised without corpus nor corpus loader.

exception olaf.commons.errors.ResourcesCheckFailError[source]

Bases: Exception

Exception raised when a resource is missing to run a component of the pipeline.

olaf.commons.kr_to_rdf_tools module

olaf.commons.kr_to_rdf_tools.all_individuals_different(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]

Create the RDF triples corresponding to making each KR concepts linguistic representation an OWL named instance and making each instance different.

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts.

base_uriURIRef

The base URI to use when creating the class URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.concept_lrs_to_owl_individuals(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]

Create the RDF triples corresponding to making each KR concepts an OWL class with each concept linguistic representations instances of the concept class.

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts.

base_uriURIRef

The base URI to use when creating the class URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.create_obj_prop_all_restriction_triples(rel_uri: URIRef, dest_concept_uri: URIRef) Tuple[URIRef, Graph][source]

Create the triples corresponding to an universal OWL property restriction part of the graph.

Parameters

rel_uriURIRef

The URI or the relation the OWL property restriction is focusing on.

dest_concept_uriURIRef

The URI of the concept (i.e., OWL class) involved in the OWL property restriction.

Returns

Tuple[URIRef, Graph]

The blank node ID origin of the OWL property restriction and the corresponding graph.

olaf.commons.kr_to_rdf_tools.create_obj_prop_some_restriction_triples(rel_uri: URIRef, dest_concept_uri: URIRef) Tuple[URIRef, Graph][source]

Create the triples corresponding to an existential OWL property restriction part of the graph.

Parameters

rel_uriURIRef

The URI or the relation the OWL property restriction is focusing on.

dest_concept_uriURIRef

The URI of the concept (i.e., OWL class) involved in the OWL property restriction.

Returns

Tuple[URIRef, Graph]

The blank node ID origin of the OWL property restriction and the corresponding graph.

olaf.commons.kr_to_rdf_tools.kr_concepts_to_disjoint_classes(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]

Create the RDF triples corresponding to making each KR concepts an OWL class and making each classes disjoint.

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts.

base_uriURIRef

The base URI to use when creating the class URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.kr_concepts_to_owl_classes(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]

Create the RDF triples corresponding to making each KR concepts an OWL class.

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts.

base_uriURIRef

The base URI to use when creating the class URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.kr_metarelations_to_owl(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]

Create the RDF triples corresponding to mapping the KR metarelations with OWL vocabulary.

The mapping depends on the providing dictionary. The KR metarelations not matching any keys in the mapping dictionary is created as an OWL object property.

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts.

base_uriURIRef

The base URI to use when creating the class URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.kr_relations_to_anonymous_only_parent(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]
Create RDF triples corresponding to said in plain english:

‘Each source concept is A SUBSET OF the set of all the things that are related to ONLY instances of the destination concept by the relation.’

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts and relations.

base_uriURIRef

The base URI to use when creating the URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.kr_relations_to_anonymous_some_equivalent(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]
Create RDF triples corresponding to said in plain english:

‘Each source concept is EQUIVALENT TO the set of all the things that are related to SOME instances of the destination concept by the relation.’

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts and relations.

base_uriURIRef

The base URI to use when creating the URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.kr_relations_to_anonymous_some_parent(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]
Create RDF triples corresponding to saying in plain english:

‘Each source concept is A SUBSET OF the set of all the things that are related to SOME instances of the destination concept by the relation.’

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts and relations.

base_uriURIRef

The base URI to use when creating the URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.kr_relations_to_domain_range_obj_props(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]

Create the RDF triples corresponding to making each KR relations OWL object properties with domain and range their source and destination concepts.

Source and destination concepts will be created as OWL classes.

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts.

base_uriURIRef

The base URI to use when creating the class URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.kr_relations_to_owl_obj_props(kr: KnowledgeRepresentation, base_uri: URIRef) Graph[source]

Create the RDF triples corresponding to making each KR relations an OWL object property.

Parameters

krKnowledgeRepresentation

The Knowledge Representation containing the concepts.

base_uriURIRef

The base URI to use when creating the class URIs.

Returns

Graph

The constructed RDF triples.

olaf.commons.kr_to_rdf_tools.owl_class_uri(label: str, base_uri: URIRef) URIRef[source]

Build an OWL class URI.

Parameters

labelstr

The label to use in the URI.

base_uriURIRef

The base URI to use.

Returns

URIRef

The OWL class URI.

olaf.commons.kr_to_rdf_tools.owl_instance_uri(label: str, base_uri: URIRef) URIRef[source]

Build an OWL named instance URI.

Parameters

labelstr

The label to use in the URI.

base_uriURIRef

The base URI to use.

Returns

URIRef

The OWL named instance URI.

olaf.commons.kr_to_rdf_tools.owl_obj_prop_uri(label: str, base_uri: URIRef) URIRef[source]

Build an OWL object property URI.

Parameters

labelstr

The label to use in the URI.

base_uriURIRef

The base URI to use.

Returns

URIRef

The OWL object property URI.

olaf.commons.llm_tools module

class olaf.commons.llm_tools.HuggingFaceGenerator(api_url: str | None = 'https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta')[source]

Bases: LLMGenerator

Text generator base on Hugging Face inference API.

check_resources() None[source]

Check that the resources needed to use the HuggingFace Generator are available.

generate_text(prompt: str) str[source]

Generate text based on a chat completion prompt for an hugging face model.

class olaf.commons.llm_tools.LLMGenerator[source]

Bases: ABC

Text generator based on LLM.

abstract check_resources() None[source]

Check that the resources needed to use the LLM Generator are available.

abstract generate_text(prompt: Any) str[source]

Method that generates a textual output based on a prompt with a LLM.

class olaf.commons.llm_tools.MistralAIGenerator(model_name: str | None = 'mistral-tiny')[source]

Bases: LLMGenerator

Text generator based on MiastralAI models.

check_resources() None[source]

Check that the resources needed to use the MistralAI Generator are available.

generate_text(prompt: List[Dict[str, str]]) str[source]

Generate text based on a chat completion prompt for MistralAI model.

class olaf.commons.llm_tools.OpenAIGenerator[source]

Bases: LLMGenerator

Text generator based on OpenAI gpt-3.5-turbo model.

check_resources() None[source]

Check that the resources needed to use the OpenAI Generator are available.

generate_text(prompt: List[Dict[str, str]]) str[source]

Generate text based on a chat completion prompt for the OpenAI gtp-3.5-turbo model.

olaf.commons.logging_config module

olaf.commons.prompts module

olaf.commons.prompts.hf_prompt_concept_extraction(doc_context: str, ct_labels: str) str[source]

Prompt template for concept extraction with Hugging Face inference API.

Parameters

doc_context: str

Extract of document contents to use as context.

ct_labels: str

The candidate terms to group into concepts.

Returns

str

Completion prompt template.

olaf.commons.prompts.hf_prompt_concept_term_extraction(context: str) str[source]

Prompt template for concept term extraction with Hugging Face inference API.

Parameters

context: str

The context to add in the prompt template.

Returns

str

Completion prompt template.

olaf.commons.prompts.hf_prompt_hierarchisation(doc_context: str, concepts_description: str) str[source]

Prompt template for hierarchisation with Hugging Face inference API.

Parameters

doc_context: str

Extract of document contents where concepts appear to use as context.

concepts_description: str

Textual description of the concepts.

Returns

str

Completion prompt template.

olaf.commons.prompts.hf_prompt_owl_axiom_extraction(kr_description: str, namespace: str) str[source]

Prompt template for axiom extraction with Hugging Face inference API.

Parameters

kr_description: str

Textual description of the knowledge representation.

namespace: str

The name space used for axiom generation.

Returns

str

Completion prompt template.

olaf.commons.prompts.hf_prompt_relation_extraction(doc_context: str, ct_labels: str) str[source]

Prompt template for relation extraction with Hugging Face inference API.

Parameters

doc_context: str

Extract of document contents to use as context.

ct_labels: str

The candidate terms to group into relations.

Returns

str

Completion prompt template.

olaf.commons.prompts.hf_prompt_relation_term_extraction(context: str) str[source]

Prompt template for relation term extraction with Hugging Face inference API.

Parameters

context: str

The context to add in the prompt template.

Returns

str

Completion prompt template.

olaf.commons.prompts.hf_prompt_term_enrichment(context: str) str[source]

Prompt template for term enrichment with Hugging Face inference API.

Parameters

context: str

The context to add in the prompt template.

Returns

str

Completion prompt template.

olaf.commons.prompts.openai_prompt_concept_extraction(doc_context: str, ct_labels: str) List[Dict[str, str]][source]

Prompt template for concept extraction with ChatCompletion OpenAI model.

Parameters

doc_context: str

Extract of document contents to use as context.

ct_labels: str

The candidate terms to group into concepts.

Returns

List[Dict[str, str]]

ChatCompletion prompt template.

olaf.commons.prompts.openai_prompt_concept_term_extraction(context: str) List[Dict[str, str]][source]

Prompt template for concept term extraction with ChatCompletion OpenAI model.

Parameters

context: str

The context to add in the prompt template.

Returns

List[Dict[str, str]]

ChatCompletion prompt template.

olaf.commons.prompts.openai_prompt_hierarchisation(doc_context: str, concepts_description: str) List[Dict[str, str]][source]

Prompt template for hierarchisation with ChatCompletion OpenAI model.

Parameters

doc_context: str

Extract of document contents where concepts appear to use as context.

concepts_description: str

Textual description of the concepts.

Returns

List[Dict[str, str]]

ChatCompletion prompt template.

olaf.commons.prompts.openai_prompt_owl_axiom_extraction(kr_description: str, namespace: str) List[Dict[str, str]][source]

Prompt template for axiom extraction with ChatCompletion OpenAI model.

Parameters

kr_description: str

Textual description of the knowledge representation.

namespace: str

The name space used for axiom generation.

Returns

List[Dict[str, str]]

ChatCompletion prompt template.

olaf.commons.prompts.openai_prompt_relation_extraction(doc_context: str, ct_labels: str) List[Dict[str, str]][source]

Prompt template for relation extraction with ChatCompletion OpenAI model.

Parameters

doc_context: str

Extract of document contents to use as context.

ct_labels: str

The candidate terms to group as relations.

Returns

List[Dict[str, str]]

ChatCompletion prompt template.

olaf.commons.prompts.openai_prompt_relation_term_extraction(context: str) List[Dict[str, str]][source]

Prompt template for relation term extraction with ChatCompletion OpenAI model.

Parameters

context: str

The context to add in the prompt template.

Returns

List[Dict[str, str]]

ChatCompletion prompt template.

olaf.commons.prompts.openai_prompt_term_enrichment(context: str) List[Dict[str, str]][source]

Prompt template for term enrichment with ChatCompletion OpenAI model.

Parameters

context: str

The context to add in the prompt template.

Returns

List[Dict[str, str]]

ChatCompletion prompt template.

olaf.commons.relation_tools module

olaf.commons.relation_tools.crs_to_relation(candidate_relations: Set[CandidateRelation]) Relation[source]

Convert a set of candidate relations to a new relation. Each candidate relation represents a different linguistic realisation in the relation created.

Parameters

candidate_relationsSet[CandidateRelation]

Set of candidate relations to convert into a relation.

Returns

Relation

The relation created from the candidate relations.

olaf.commons.relation_tools.cts_to_crs(candidate_terms: Set[CandidateTerm], concepts_labels_map: Dict[str, Concept], spacy_model: Language, concept_max_distance: int, scope: str) Set[CandidateRelation][source]

Convert candidate terms into candidate relations. Concepts are searched around the candidate term within a given distance. If source and destination concepts are found, candidate relation as triple is created. Otherwise, candidate relation has no source and destination concepts.

Parameters

candidate_termsSet[CandidateTerm]

Set of candidate terms to convert into candidate relations.

concepts_labels_mapDict[str,Concept]

Dictionary with concept labels as keys and concepts corresponding as values.

spacy_modelspacy.language.Language

SpaCy model to use.

concept_max_distanceint

The maximum distance between the candidate term and the concept sought.

scopestr

Scope used to search concepts. Can be “doc” for the entire document or “sent” for the candidate term sentence.

Returns

Set[CandidateRelation]

Set of candidate relations found from the candidate terms.

olaf.commons.relation_tools.group_cr_by_concepts(candidate_relations: List[CandidateRelation]) List[Set[CandidateRelation]][source]

Group relation candidates with same source and destination concepts Parameters ———- candidate_relations: List[CandidateRelation]

Candidate relations to group by their concepts

Returns

List[Set[CandidateRelation]]

Groups of candidate relations with same source and destination concepts.

olaf.commons.spacy_processing_tools module

olaf.commons.spacy_processing_tools.is_not_num(token: Token) bool[source]

Return True if the Spacy Token is NOT a numerical value.

Parameters

tokenspacy.tokens.Token

The Spacy token to test.

Returns

bool

Whether the Token Shape is NOT a numerical value or it is.

olaf.commons.spacy_processing_tools.is_not_punct(token: Token) bool[source]

Return True if the Spacy Token is NOT a punctuation symbol.

Parameters

tokenspacy.tokens.Token

The Spacy token to test.

Returns

bool

Whether the Token Shape is NOT a punctuation symbol or it is.

olaf.commons.spacy_processing_tools.is_not_stopword(token: Token) bool[source]

Return True if the Spacy Token is NOT a stopword.

Parameters

tokenspacy.tokens.Token

The Spacy token to test.

Returns

bool

Whether the Token Shape is NOT a stopword or it is.

olaf.commons.spacy_processing_tools.is_not_url(token: Token) bool[source]

Return True if the Spacy Token is NOT a url.

Parameters

tokenspacy.tokens.Token

The Spacy token to test.

Returns

bool

Whether the Token Shape is NOT a url or it is.

olaf.commons.spacy_processing_tools.select_on_pos(token: Token, pos_to_select: List[str]) bool[source]

Return true if the Spacy Token POS string is in the pos_to_select list.

Parameters

tokenspacy.tokens.Token

The Spacy token to test

pos_to_selectList[str]

The list of strings corresponding to the POS tags to keep.

Returns

bool

Whether the Token POS tag is in pos_to_select or not

olaf.commons.spacy_processing_tools.spacy_span_ngrams(span: Span, gram_size: int) List[Span][source]

Adapt the NTLK ngrams function to work with spaCy Span objects.

Parameters

spanspacy.tokens.span.Span

The spaCy Span object to extract the ngrams from.

gram_sizeint

The gram size.

Returns

List[spacy.tokens.span.Span]

The list of ngrams as spaCy Span objects.

olaf.commons.spacy_processing_tools.spans_overlap(span1: Span, span2: Span) bool[source]

Return true is the spans are overlapping, else False.

Parameters

span1spacy.tokens.Span

The first spaCy span.

span2spacy.tokens.Span

The second spaCy span.

Returns

bool

Whether or not the spans are overlapping.

olaf.commons.string_tools module

olaf.commons.string_tools.space_to_underscore_str(text_with_space: str) str[source]

Tool function to replace spaces by underscores in a text.

Parameters

text_with_spacestr

The text containing spaces

Returns

str

the text with underscores

olaf.commons.string_tools.underscore_to_space_str(text_with_underscore: str) str[source]

Tool function to replace underscores by spaces in a text.

Parameters

text_with_underscorestr

The text containing underscores

Returns

str

the text with spaces

olaf.commons.wordnet_tools module

olaf.commons.wordnet_tools.fetch_wordnet_lang(lang: str) str[source]
Tool function to map a Spacy language tag to the corresponding WordNet one.

Return None if no mapping is found. Adapted from project <https://github.com/argilla-io/spacy-wordnet>.

Parameters

langstr

The spaCy language tag.

Returns

str

The WordNet language tag.

Raises

Exception

An exception to spot a language not existing.

olaf.commons.wordnet_tools.load_enrichment_wordnet_domains_from_file(enrichment_domains_path: str) Set[str][source]
Load a set of domains (strings) from a file.

The file is expected to contain one domain string per line.

Parameters

enrichment_domains_pathstr

The full or relative path to the file containing wordnet domains to use for enrichment.

Returns

Set[str]

The set of domains.

olaf.commons.wordnet_tools.load_wordnet_domains(wordnet_domains_path: str) Dict[str, Set[str]][source]

Load the mapping of WordNet Synsets to domains from a file. The file should have the structure: synset_code domain1 domain2. Function inspired from project <https://github.com/argilla-io/spacy-wordnet>

Parameters

wordnet_domains_pathstr

The full or relative path to wordnet domains synsets mapping file.

Returns

Dict[str, List[str]]

The mapping of WordNet Synsets to domains.

olaf.commons.wordnet_tools.spacy2wordnet_pos(spacy_pos: str) str | None[source]
Tool function to map a spaCy POS tag to the corresponding WordNet one.

Return None if no mapping is found. Adapted from project <https://github.com/argilla-io/spacy-wordnet>.

Parameters

spacy_posstr

The spaCy POS tag.

Returns

str, optional

The WordNet POS tag.

Module contents